Research Progress

Research Group Led by Prof. You Bo Published A Paper on Accounts of Chemical Research

Author:  Time:2023-05-30 10:30:31  Click:

Recently, Research Group Led by Prof. You Bo published their research work entitled "Dynamic Electrodeposition on Bubbles: An Effective Strategy toward Porous Electrocatalysts for Green Hydrogen Cycling" on Accounts of Chemical Research.


Closed-loop cycling of green hydrogen is a promising alternative to the current hydrocarbon economy for mitigating the energy crisis and environmental pollution. It stores energy from renewable energy sources like solar, wind, and hydropower into the chemical bond of dihydrogen (H2) via (photo)electrochemical water splitting, and then the stored energy can be released on demand through the reverse reactions in H2–O2 fuel cells. The sluggish kinetics of the involved half-reactions like hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR) limit its realization. Moreover, considering the local gas–liquid–solid triphase microenvironments during H2 generation and utilization, rapid mass transport and gas diffusion are critical as well. Accordingly, developing cost-effective and active electrocatalysts featuring three-dimensional hierarchically porous structures are highly desirable to promote the energy conversion efficiency. Traditionally, the synthetic approaches of porous materials include soft/hard templating, sol–gel, 3D printing, dealloying, and freeze-drying, which often need tedious procedures, high temperature, expensive equipment, and/or harsh physiochemical conditions. In contrast, dynamic electrodeposition on bubbles using the in situ formed bubbles as templates can be conducted at ambient conditions with an electrochemical workstation. Moreover, the whole preparation process can be finished within minutes/hours, and the resulting porous materials can be employed as catalytic electrodes directly, avoiding the use of polymeric binders like Nafion and the consequent issues like limited catalyst loading, reduced conductivity, and inhibited mass transport.

   

Link to this paper: https://pubs.acs.org/doi/10.1021/acs.accounts.3c00059?ref=pdf

© 2021 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
Address: Chemistry Building, Luoyu Road 1037, Wuhan ,China 
Postcode: 430074