[1]N. Wang, T. Tachikawa*, T. Majima. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chemical Science. 2011, 2: 891-900 [2]N. Wang, L. Zhu*, M. Lei, et al., Linduced drastic enhancement of catalytic activity of nano-BiFeO3 for oxidative degradation of bisphenol A. ACS Catalysis. 2011, 1: 1193-1202 [3]N. Wang, L. Zhu*, K. Deng, et al., Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Applied Catalysis B: Environmental 2010, 95: 400-407 [4]N. Wang, L. Zhu*, D. Wang, et al., Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochemistry. 2010, 17: 526-533 [5]N. Wang, C.-P. Yee, Y.-Y. Chen, et al., Electrophoresis of a pH-regulated zwitterionic nanoparticle in a pH-regulated zwitterionic capillary, Langmuir, 2013, 29: 7162-7169 [6]N. Wang, C. Hsu*, L. Zhu*, et al., Influence of metal oxide nanoparticles concentration on their zeta potential, Journal of Colloid & Interface Science, 2013, 407: 22-28 [7]A. Huang, N. Wang*, M. Lei, et al., Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment. Environmental Science & Technology. 2013, 47: 518−525 [8]M. Lei, N. Wang*, L. Zhu, et al., A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst, Chemical Engineering Journal, 2014, 241: 207-215 [9]T. Tachikawa*, N. Wang, S. Yamashita, et al.,. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angewandte Chemie-International Edition 2010, 49: 8593-8597 [10]Q. Liu, A. Huang, N. Wang*, G.Zheng, L. Zhu. Rapid fluorometric determination of perfluorooctanoic acid by its quenching effect on the fluorescence of quantum dots. Journal of Luminescence 2015, 161: 374–381. |